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mit x; als Anteil der Aktiei am Portefeuille.

> Bei gegebenen Renditeparametern der einzelnen Aktien (Erwartungswerte, Varianzen, Kovari-
anzen) ist die Struktur eines Portefeuille valtstlig durch die Anteile beschrieben, die in die
einzelnen Aktien investiert werden.
Im Grundmodell werdeniir die x; keine Obergrenzen oder Nichtnegatwitbedingungen vor-

ausgesetzt.
Erwartungswert der Portefeuille-Rendite:
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mit p; als Erwartungswert der Renditeder Aktiei. -
Varianz der Portefeuille-Rendite:
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mit ojj als Kovarianz der Renditen der Aktiénind j.
Portefeuille-Optimierung: Minimierung der Portefeuille-Variam% unter den Nebenbedingungen
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> Fireinen vorgegebenen Erwartungswert der Portefeuille-Remglise die Wertpapiermischung

{X1,%2,...,Xn} zu finden, die die Varianz der Portefeuille-Rendite minimiert.

Lagrange-Ansatz des Portefeuille-Problems

Lagrange-Ansatzzur Losung der Portefeuille-Optimierung:
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Ableitungen der Lagrange-Funktion:
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Aktienanteile im Optimum:
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mit Gj; als Element der Inversen dearianz-Kovarianz Matrix .
Portefeuille-Planung in Matrixschreibweise:
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Ist die Varianz-Kovarianz Matrix invertierbar, dann ist der Vektor der optimalen Portefeuille-Anteile



